
SPECpy Documentation
Release 1.1.7Nov

Lakhsmipriya Sukumar and Brian Toby

November 17, 2012

CONTENTS

1 Module spec: SPEC-like emulation 3
1.1 Motor interface routines . 3
1.2 Scaler routines . 3
1.3 More spec-like capabilities . 3
1.4 Routines not in spec . 4
1.5 Global variables . 4
1.6 A[] . 5
1.7 S[] . 5
1.8 Complete Function Descriptions . 5

2 Module macros: Additional SPEC-like emulation 17
2.1 General Purpose Routines . 17
2.2 Logging . 17
2.3 Plotting . 19
2.4 Monitoring . 20
2.5 Macros specific to 1-ID . 20
2.6 Complete Function Descriptions . 20

3 Module AD: Area-Detector access 31
3.1 Detector Access Routines . 31
3.2 Detector Setup Routines . 31
3.3 Defined Commands . 31
3.4 Complete Function Descriptions . 32

4 Module GE: GE Image processing 37
4.1 Summary . 37
4.2 Complete Function Descriptions . 37

Python Module Index 43

Index 45

i

ii

SPECpy Documentation, Release 1.1.7Nov

SPEC Simulation module

CONTENTS 1

SPECpy Documentation, Release 1.1.7Nov

2 CONTENTS

CHAPTER

ONE

MODULE SPEC: SPEC-LIKE
EMULATION

The Python functions in this module are designed to emulate similar commands/macros in SPEC or provide similar
functionality. They require the PyEpics package.

1.1 Motor interface routines

Description Relative Absolute
move motor mvr() mv()
move motor with wait umvr() umv()
move multple motors 1 mmv()
move multple w/wait 1 ummv()
where is this motor? wm()
where are all motors? wa()

1.2 Scaler routines

description command
start and readout scaler after completion ct()
start scaler and return count_em()
wait for scaler to complete wait_count()
read scaler get_counts()

1.3 More spec-like capabilities

description command
Turn simulation mode on onsim()
Turn simulation mode off offsim()
array of motor positions A[]
array of last count values S[]

1These command implement capabilities not present in spec.

3

SPECpy Documentation, Release 1.1.7Nov

1.4 Routines not in spec

Routine Description
sleep() Delay for a specified amount of time
EnableEPICS() Turns simulation mode on or off
UseEPICS() Show if EPICS should be accessed
DefineMtr() Define a motor to be accessed
DefinePseudoMtr() Define pseudo motors from previously defined motors
GetMtrInfo() Retrieves all motor info from a key
DefineScaler() Define a scaler to be accessed
GetScalerInfo() Retrieves all scaler info from an index
ListMtrs() Returns a list of motor symbols
Sym2MtrVal() Retrieves the motor entry key from a symbol
ExplainMtr() Retrieves the motor description from a key or symbol
ReadMtr() Returns the motor position from a key
PositionMtr() Moves a motor
MoveMultipleMtr() Move several motors together
GetScalerLastCount() Returns the last set of counts that have been read for a scaler
GetScalerLastTime() Returns the counting time for the last use of a scaler
GetScalerLabels() Returns the labels that have been retrieved for a scaler
SetMon() Set the monitor channel for the scaler
GetMon() Return the monitor channel for the scaler
SetDet() Set the main detector channel for the scaler
GetDet() Return the main detector channel for the scaler
setCOUNT() Sets the default counting time
initElapsed() Initialize the elapsed time counter
setElapsed() Update the elapsed time counter
setRETRIES() Sets the maximum number of EPICS retries
setDEBUG() Sets debugging mode (printing lots of stuff) on or off

1.5 Global variables

As described below, these variables can be read from outside of the package, but should be set with care.

COUNT defines the default counting time (sec) when ct is called without an argument. Defaults to 1
sec. Use setCOUNT() to set this when using from spec import *, as setting the variable
directly has problems:

This will sort-of work:

>>> from spec import *
>>> import spec
>>> spec.COUNT=3

however, COUNT in the local namespace will still have the old value.

but this will not work:

>>> from spec import *
>>> COUNT=3

This fails because the local copy of COUNT gets replaced, but the copy of COUNT
actually in the spec module is left unchanged.

4 Chapter 1. Module spec: SPEC-like emulation

SPECpy Documentation, Release 1.1.7Nov

MAX_RETRIES Number of times to retry an EPICS operation (that are nominally expected to work on
the first try) before generating an exception. Use setRETRIES() to set this or care when changing
this (see comment on COUNT, in this section.)

DEBUG When set to True lots of print statements to be executed. Use for code development/testing.
Use setDEBUG() to set this or care when changing this (see comment on COUNT, above in this
section.)

ELAPSED Contains the time that has elapsed between when the spec module was loaded (or
initElapsed() was called) and when setElapsed() was last called, which happens when
motors are moved or counting is done or sleep() is called.

SIMSPEED When in simulation mode, scripts are sped up by decreasing delays (calls to
spec.sleep()) by a factor of SIMSPEED. Be sure to change spec.SIMSPEED if you want
to change this.

1.6 A[]

A As in spec, A[mtr1] provides the current position of mtr1. A is not actually implemented as a global
array, but can be indexed as one.

1.7 S[]

S As in spec, S[i] provides the last read intensity from scaler channel i. This is a python list and is
thus indexed starting at 0. The first channel, S[0], is expected to be configured as the count-time
reference channel.

1.8 Complete Function Descriptions

The functions available in this module are listed below.

SpecPy.spec.DefineMtr(symbol, prefix, comment=’‘)
Define a motor for use in this module. Adds a motor to the motor table.

Parameters

• symbol (string) – a symbolic name for the motor. A global variable is defined in this mod-
ule’s name space with this name, This must be unique; exception specException is raised if
a name is reused.

• prefix (string) – the prefix for the motor PV (ioc:mnnn). Omit the motor record field name
(.VAL, etc.).

• comment (string) – a human-readable text field that describes the motor. Suggestion: in-
clude units and define the motion direction.

Returns key of entry created in motor table (str).

If you will use the ‘‘ from spec import * ‘‘ python command to import these routines into the current module’s
name space, it is necessary to repeat this command after DefineMtr() to import the globals defined within
in the top namespace:

1.6. A[] 5

SPECpy Documentation, Release 1.1.7Nov

Example (recommended for interactive use):

>>> from spec import *
>>> EnableEPICS()
>>> DefineMtr(’mtrXX1’,’ioc1:mtr98’,’Example motor #1’)
>>> DefineMtr(’mtrXX2’,’ioc1:mtr99’,’Example motor #2’)
>>> from spec import *
>>> mv(mtrXX1, 0.123)

Note that if the second from ... import * command is not used, the variables mtrXX1 and mtrXX2
cannot be accessed and the final command will fail.

Alternate example (this is a cleaner way to code scripts, since namespaces are not mixed):

>>> import spec
>>> spec.EnableEPICS()
>>> spec.DefineMtr(’mtrXX1’,’ioc1:mtr98’,’Example motor #1’)
>>> spec.DefineMtr(’mtrXX2’,’ioc1:mtr99’,’Example motor #2’)
>>> spec.mv(spec.mtrXX1, 0.123)

It is also possible to mix the two styles:

>>> import spec
>>> spec.EnableEPICS()
>>> spec.DefineMtr(’mtrXX1’,’ioc1:mtr98’,’Example motor #1’)
>>> spec.DefineMtr(’mtrXX2’,’ioc1:mtr99’,’Example motor #2’)
>>> from spec import *
>>> mv(mtrXX1, 0.123)

SpecPy.spec.DefinePseudoMtr(inpdict, comment=’‘)
Define one or more pseudo motors in terms of previously defined motors. Adds the new pseudo motor defini-
tion(s) to the motor table.

Parameters

• inpdict (dict) – defines a dictionary that defines pseudo motor postions in terms of real
motor positions and maps pseudo-motor target positions into real motor target positions.
Dictionary entries that do not correspond to previously defined motors are used to define
new pseudo-motors.

• comment (string) – a human-readable text field that describes the motor. Suggestion: in-
clude units and define the motion direction.

Returns key of entry created in motor table (str).

For computations in the dictionary, motor positions may be referenced in one of two ways, A[mtr] or T[mtr].
A[mtr] provides the actual position of the motor while T[mtr] provides the target position for the move, i.e., the
value of the motor or pseudo-motor after the move, if it will be changed. For definitions of pseudo motors, use
of A[] is usually correct, but for entries that compute target positions of real motors, one almost always wishes
to use T[] to compute from target positions (this is most important for use with MoveMultipleMtr(), where
multiple target positions are updated prior to any motor movement.). See the examples, below. Note also that
these expressions are computed in the spec namespace, so the prefix ‘spec.’ on motor names (etc.) is not needed.

Note that all the routines in math and numpy are available for use in these calculations (but must be prefixed by
math or numpy or np (such as math.log10() or np.exp2() or numpy.exp2() or constant math.pi).
In addition, for convenience the following functions are also defined without a prefix: sind() (sine of angle
in degrees), cosd() (cosine of angle in degrees), tand() (tangent of angle in degrees), asind() (inverse
sine, returns angle in degrees), acosd() (inverse cosine, returns angle in degrees), atand() (inverse tangent,
returns angle in degrees), abs(), sqrt() and exp().

Examples:

6 Chapter 1. Module spec: SPEC-like emulation

SPECpy Documentation, Release 1.1.7Nov

>>> DefineMtr(’j1’,’1idc:j1’,’sample table N jack’)
>>> DefineMtr(’j2’,’1idc:j2’,’sample table SE jack’)
>>> DefineMtr(’j3’,’1idc:j3’,’sample table SW jack’)
>>> spec.DefinePseudoMtr({
... # define pseudo motor position
... ’jack’: ’(A[j1] + A[j2] + A[j3])/3.’,
... # map motor movements in terms of pseudo motor target position
... ’j1’: ’A[j1] + T[jack] - A[jack]’,
... ’j2’: ’A[j2] + T[jack] - A[jack]’,
... ’j3’: ’A[j3] + T[jack] - ((A[j1] + A[j2] + A[j3])/3)’,
... })

The above definition a new pseudo motor, jack is defined in terms of three motors that are already defined, j1, j2,
and j3. Note that ‘T[jack] - A[jack]’ (or equivalently ‘T[jack] - ((A[j1] + A[j2] + A[j3])/3)’, both are used here
as a pedagogical example) computes the difference between the target position for jack and its current position
and then adds that difference to the positions for j1, j2, and j3, thus, the motors move relative to their initial
positions. Note that the comments placed in the input are only a guide to the reader, the fact that ‘jack’ is new
and j1, j2, and j3 are defined indicates that jack is to be defined.

>>> DefineMtr(’samX’,’1idc:m77’,’sample X position (mm) + outboard’)
>>> DefineMtr(’samZ’,’1idc:m78’,’sample Z position (mm) + up’)
>>> DefineMtr(’phi’,’1idc:mphi’,’sample rotation (deg)’)
>>> spec.DefinePseudoMtr({
... # define pseudo motor positions
... ’samLX’: ’cosd(A[phi])*A[samX] + sind(A[phi])*A[samZ]’,
... ’samLZ’: ’-sind(A[phi])*A[samX] + cosd(A[phi])*A[samZ]’,
... # define motor movements in terms of pseudo motor target position
... ’samX’ : ’cosd(T[phi])*T[samLX] - sind(T[phi]) * T[samLZ]’,
... ’samZ’ : ’sind(T[phi])*T[samLX] + cosd(T[phi]) * T[samLZ]’,
... })

In the above definition two new pseudo motors, samLX and samLZ are defined in terms of three motors that
are already defined, samX, samZ, and phi. This maps the axes defined by the sample translations samX, samZ
which are rotated by motor phi relative to the diffractometer coordinate system into a static frame of reference.
Note that use of T[samLX] and T[samLY] is necessary in the latter expressions, but A[phi] could be used in
place of T[phi] as long as one does not try to move phi along with samLX and/or samLY in a single call to
MoveMultipleMtr().

As described for DefineMtr(), if you will use the ‘‘ from spec import * ‘‘ python command to import these
routines into the current module’s name space, it is necessary to repeat this import command after defining all
motors and pseudo motors to import the newly defined global symbols into the top namespace.

SpecPy.spec.DefineScaler(prefix, channels=8, index=0)
Defines a scaler to be used for this module

Parameters

• prefix (string) – the prefix for the scaler PV (ioc:mnnn). Omit the scaler record field name
(.CNT, etc.)

• channels (int) – the number of channels associated with the scaler. Defaults to 8.

• index (int) – an index for the scaler, if more than one will be defined. The default (0) is used
to define the scaler that will be used when ct() is called with one or no arguments.

Example (recommended for interactive use):

>>> from spec import *
>>> EnableEPICS()

1.8. Complete Function Descriptions 7

SPECpy Documentation, Release 1.1.7Nov

>>> DefineScaler(’id1:scaler1’,16)
>>> DefineScaler(’id1:scaler2’,index=1)
>>> ct()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

Alternate example (preferred for use in code):

>>> import spec as s
>>> s.EnableEPICS()
>>> s.DefineScaler(’ioc1:3820:scaler1’,16)
>>> s.DefineScaler(’ioc1:3820:scaler2’,index=1)
>>> s.ct()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
>>> s.ct(index=1)
[1, 2, 3, 4, 5, 6, 7, 8]

SpecPy.spec.EnableEPICS(state=True)
Call to enable communication with EPICS.

This must be called to enable communication with EPICS befor initializg motors. If not called then specpy will
function in simulation mode only. If the PyEpics module cannot be loaded, then this function has no effect.

Parameters state (bool) – if False is specified, then EPICS communication is disabled (default
value, True).

SpecPy.spec.ExplainMtr(mtr)
Show the description for a motor, as defined in DefineMtr()

Parameters mtr (various) – symbolic name for the motor, can take two forms: a motor key or a
motor symbol.

Returns motor description (str) or ‘?’ if not defined

SpecPy.spec.GetDet(index=0)
Return the main detector channel for the scaler or none if not defined. (See SetDet()) This is used for
ASCAN, etc.

Parameters index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns the channel number of the Detector

SpecPy.spec.GetMon(index=0)
Return the monitor channel for the scaler or none if not defined. (See SetMon()) This is used for counting on
the Monitor.

Parameters index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns the channel number of the Monitor

SpecPy.spec.GetMtrInfo(mtr)
Return a dictionary with motor information.

Parameters mtr (str) – a key corresponding to an entry in the motor table. If the value does not
correspond to a motor entry, an exception is raised.

Returns dictionary with motor information

SpecPy.spec.GetScalerInfo(index=0)
returns information about a scaler based on the index

8 Chapter 1. Module spec: SPEC-like emulation

SPECpy Documentation, Release 1.1.7Nov

Parameters index (int) – an index for the scaler, if more than one is be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns a dictionary with information on the scaler

SpecPy.spec.GetScalerLabels(index=0)
returns the labels that have been retrieved for a scaler

Parameters index (int) – an index for the scaler, if more than one is be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns a list of labels

SpecPy.spec.GetScalerLastCount(index=0)
returns the last set of counts that have been read for a scaler

Parameters index (int) – an index for the scaler, if more than one is be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns a list of the last counts

SpecPy.spec.GetScalerLastTime(index=0)
returns the count time for the last read from a scaler

Parameters index (int) – an index for the scaler, if more than one is be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns a single float with the last elapsed time for that scaler (initialized at 0) of the last counts

SpecPy.spec.ListMtrs()
Returns a list of the variables defined as motor symbols.

Returns a python list of defined motor symbols (list of str values).

SpecPy.spec.MoveMultipleMtr(mtrposlist, nsteps=1, wait=True)
Launch movement of several motors together. If a motor would be moved more than one time (for example
because it is referenced in more than on pseudo-motor), only the last move is actually performed. The target for
each motor is included in subsequent computations, so that when motor positions are computed from postions
of more than one pseudo-motor, the performed move will represent the positions from the cummulative move of
all previous motors. To deal with the case where motor speeds or movements are unequal, the requested moves
can be broken down into a series of nsteps steps, where each motor will be moved an increment of 1/nsteps
times the total requested change in position. This will not keep the movement on exactly the requested trajectory,
but it will stay close.

Parameters

• mtrposlist (list) – A list of motor keys and target positions, for example
[(samLX,1.1),(samLZ,0.25)]

• nsteps (int) – the number of steps to be used to break down the requested move. The
default, 1, means that all motors are launched at the same time for the entire requested
movement range, but a value of 2 indicates that all motors will launched to the mid-point
of the requested movement range and only after all motors have reached that point, will the
subsequent set of moves be started.

• wait (bool) – When wait is False, moves are started, but the routine returns immediately, but
wait is True (default), the routine returns after all motors have stopped moving. If :nsteps
is greater than 1, this parameter is ignored and the routine returns only after all requested
moves are completed.

Example:

1.8. Complete Function Descriptions 9

SPECpy Documentation, Release 1.1.7Nov

>>> MoveMultipleMtr([(samLX,1.1),(samLZ,0.25)],5,wait=True)

SpecPy.spec.PositionMtr(mtr, pos, wait=True)
Move a motor

Position a motor associated with mtr to position pos, wait for the move to complete if wait is True, or else return
immediately. The function attempts to verify the move command has been acted upon.

Parameters

• mtr (int) – a value corresponding to an entry in the motor table, as defined in
DefineMtr(). If the value does not correspond to a motor entry, an exception is raised.

• pos (float) – a value to position the motor. If the value is invalid or outside the limits an
exception occurs (todo: are hard limits checked?).

• wait (bool) – a flag that specifies if the move should be completed before the function
returns. If False, the function returns immediately.

SpecPy.spec.ReadMtr(mtr)
Return the motor position associated with the passed motor value.

Parameters mtr (int) – a key corresponding to an entry in the motor table. If the value does not
correspond to a motor entry, an exception is raised.

Returns motor position (float).

SpecPy.spec.SetDet(Detector=None, index=0)
Set the main detector channel for the scaler. The default is to restore this to the initial setting, where this is
undefined. This is used for ASCAN, etc.

Parameters

• Monitor (int) – channel number. If omitted the Monitor is set as undefined. The valid range
for this parameter is 0 through one less than the number of channels.

• index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

SpecPy.spec.SetMon(Monitor=None, index=0)
Set the monitor channel for the scaler. The default is to restore this to the initial setting, where this is undefined.
This is needed for counting on the Monitor.

Parameters

• Monitor (int) – channel number. If omitted the Monitor is set as undefined. The valid range
for this parameter is 0 through one less than the number of channels.

• index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

SpecPy.spec.Sym2MtrVal(mtrsym)
Converts a motor symbol (as a string) to the motor value (key) as assigned in DefineMtr()

Parameters mtrsym (str) – a motor symbol as supplied in DefineMtr(). If the value does not
correspond to a motor entry, an exception is raised.

Returns motor value (str).

SpecPy.spec.UseEPICS()
Show if use of EPICS is allowed or disabled, see EnableEPICS(), onsim() and offsim().

Returns True if PyEpics has been loaded and enabled (see EnableEPICS()) and simulate mode
is False (see onsim() and offsim()), False otherwise.

10 Chapter 1. Module spec: SPEC-like emulation

SPECpy Documentation, Release 1.1.7Nov

SpecPy.spec.count_em(count=None, index=0)
Cause scaler to start counting for specified period, but return immediately. On the first use, this will take the
scaler out of autocount mode and put it into one-shot mode (this is because if one does not read the scaler shortly
after a count when in autocount mode, the scaler returns to autocount and the values are lost.) If put in one-shot
mode, then autocount will be restored when the python interpreter is exited.

Counting is on time if count is 0 or positive; Counting is on monitor if count < 0

Parameters

• count-time (float) – time (sec) to count, if omitted COUNT is used (see Global variables
section)

• index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

Returns None

Example:

>>> count_em()
>>> # do other commands
>>> wait_count()
>>> get_counts()

SpecPy.spec.ct(count=None, index=0, label=False)
Cause scaler to count for specified period or to a specified number of counts on a prespecified channel (see
SetMon())

Counting is on time if count is 0 or positive; Counting is on monitor if count < 0

Global variable S is set to the count values for the n channels (set in DefineScaler()) to provide function-
ality similar to spec.

Parameters

• count (float) – time (sec) to count, if omitted COUNT is used (see Global variables section)

• index (int) – an index for the scaler, if more than one is defined (see DefineScaler()).
The default (0) is used if not specified.

• label (bool) – indicates if counts should be printed along with their labels The default (False)
is to not print counts

Returns count values for the channels (see DefineScaler())

Example:

>>> ct()
[10000000.0, 505219.0, 359.0, 499.0, 389.0, 356.0, 114.0, 53.0]
>>> SetMon(3)
>>> ct(-1000)
[20085739.0, 1011505.0, 719.0, 1000.0, 781.0, 715.0, 226.0, 105.0]

SpecPy.spec.get_counts(wait=False)
Read scaler with optional delay, must follow count_em

reads count values for the channels (see DefineScaler())

Parameters wait (bool) – True causes the routine to wait for the scaler to complete; False (default)
will read the scaler instananeously

1.8. Complete Function Descriptions 11

SPECpy Documentation, Release 1.1.7Nov

Returns a list of channels values

Example:

>>> get_counts()
[1, 2, 3, 4, 5, 6, 7, 8]

SpecPy.spec.initElapsed()
Initialize the elapsed time counter

SpecPy.spec.mmv(mtrposlist, nsteps=1, wait=False)
Launch movement of several motors together. By default, does not wait for all motion to complete. See the
equivalent function, MoveMultipleMtr(), for a complete description.

Parameters

• mtrposlist (list) – A list of pairs of motor keys and target positions

• nsteps (int) – the number of steps to be used to break down the requested move. The
default, 1, means that all motors are launched at the same time for the entire requested
movement range, but a value of 2 indicates that all motors will launched to the mid-point
of the requested movement range and only after all motors have reached that point, will the
subsequent set of moves be started.

• wait (bool) – When wait is False, moves are started, but the routine returns immediately, but
wait is True, the routine returns after all motors have stopped moving. the default is to not
wait. Note that if nsteps is greater than 1, this parameter is ignored and the routine returns
only after all requested moves are completed.

Example:

>>> mmv([(samLX,1.1),(samLZ,0.25)])

SpecPy.spec.mv(mtr, pos)
Move motor without wait

If the move cannot be made, an exception is raised.

Parameters

• mtr (int) – a value corresponding to an entry in the motor table, as defined in
DefineMtr(). If the value does not correspond to a motor entry, an exception is raised.

• pos (float) – a value to position the motor. If the value is invalid or outside the limits, an
exception occurs.

Example:

>>> mv(samX,0.1)

SpecPy.spec.mvr(mtr, delta)
Move motor relative to current position without wait.

If the move cannot be made, an exception is raised.

Parameters

• mtr (int) – a value corresponding to an entry in the motor table, as defined in
DefineMtr(). If the value does not correspond to a motor entry, an exception is raised.

• delta (float) – a value to offset the motor. If the resulting value is invalid or outside the
limits, an exception occurs.

12 Chapter 1. Module spec: SPEC-like emulation

SPECpy Documentation, Release 1.1.7Nov

Example:

>>> mvr(samX,0.1)

SpecPy.spec.offsim()
Turns simulation mode off. Note that unlike EnableEPICS(), onsim() and offsim() can be used at any
time.

SpecPy.spec.onsim()
Turns simulation mode on. Note that unlike EnableEPICS(), onsim() and offsim() can be used at any
time.

SpecPy.spec.setCOUNT(count)
Sets the default counting time, see global variable COUNT (see Global variables section). Used in ct().

Parameters count (float) – default time (sec) to count.

SpecPy.spec.setDEBUG(state=True)
Sets the debug state on or off, see global variable DEBUG (see Global variables section)

Parameters state (bool) – DEBUG is initialized as False, but the default effect of setDEBUG, if no
parameter is specified is to turn the debug state on.

SpecPy.spec.setElapsed()
Measure time from the last call to initElapsed(). Global variable ELAPSED is set to this value. This is
called after motors are moved and when counting is done with scalers or sleep() is called.

Returns the elapsed time in sec (float)

SpecPy.spec.setRETRIES(count=20)
Sets the maximum number of times to retry an EPICS operation (that would nominally be expected to work on
the first try) before generating an exception. See global variable MAX_RETRIES (in Global variables section)

Parameters count (float) – maximum number of times to retry an EPICS operation. Defaults to 20.

SpecPy.spec.sleep(sec)
Causes the script to delay for sec seconds. This routine gets replaced when plotting is loaded by an alternate
routine (see sleepWithYield() in macros._makePlotWin()).

Parameters sec (float) – time to delay in seconds

SpecPy.spec.ummv(mtrposlist, nsteps=1, wait=True)
Launch movement of several motors together. By default, waits for all motion to complete. See the equivalent
function, MoveMultipleMtr(), for a complete description.

Parameters

• mtrposlist (list) – A list of pairs of motor keys and target positions

• nsteps (int) – the number of steps to be used to break down the requested move. The
default, 1, means that all motors are launched at the same time for the entire requested
movement range, but a value of 2 indicates that all motors will launched to the mid-point
of the requested movement range and only after all motors have reached that point, will the
subsequent set of moves be started.

• wait (bool) – When wait is False, moves are started, but the routine returns immediately, but
wait is True (default), the routine returns after all motors have stopped moving. If nsteps
is greater than 1, this parameter is ignored and the routine returns only after all requested
moves are completed.

Example:

1.8. Complete Function Descriptions 13

SPECpy Documentation, Release 1.1.7Nov

>>> ummv([(samLX,1.1),(samLZ,0.25)])

SpecPy.spec.umv(mtr, pos)
Move motor with wait.

If the move cannot be completed, an exception is raised.

Parameters

• mtr (int) – a value corresponding to an entry in the motor table, as defined in
DefineMtr(). If the value does not correspond to a motor entry, an exception is raised.

• pos (float) – a value to position the motor. If the value is invalid or outside the limits, an
exception occurs.

Example:

>>> umv(samX,0.1)

SpecPy.spec.umvr(mtr, delta)
Move motor relative to current position with wait.

If the move cannot be completed, an exception is raised.

Parameters

• mtr (int) – a value corresponding to an entry in the motor table, as defined in
DefineMtr(). If the value does not correspond to a motor entry, an exception is raised.

• delta (float) – a value to offset the motor. If the resulting value is invalid or outside the
limits, an exception occurs.

Example:

>>> umvr(samX,0.1)

SpecPy.spec.wa(label=False)
Print positions of all motors defined using DefineMtr().

Parameters label (bool) – a flag that specifies if the list should include the motor descriptions. If
omitted or False, the descriptions are not included.

Example:

>>> wa()
samX 1.0
samZ 0.0
>>> wa(True)
samX 1.0 sample X position (mm) + outboard
samZ 0.0 sample Z position (mm) + up

SpecPy.spec.wait_count()
Wait for scaler to finish, must follow count_em

Returns None

Example:

>>> wait_count()

14 Chapter 1. Module spec: SPEC-like emulation

SPECpy Documentation, Release 1.1.7Nov

SpecPy.spec.wm(*mtrs)
Read out specified motor(s).

Arguments one or more motor table entries that are defined in DefineMtr().

Returns a single float if a single argument is passed to wm. Returns a list of floats if more than one
argument is passed.

Example:

>>> wm(samX,samZ)
[1.0, 0.0]

SPEC Simulation: Macros module

1.8. Complete Function Descriptions 15

SPECpy Documentation, Release 1.1.7Nov

16 Chapter 1. Module spec: SPEC-like emulation

CHAPTER

TWO

MODULE MACROS: ADDITIONAL
SPEC-LIKE EMULATION

Python functions listed below are designed to implement functionality for data collection similar to that available
in spec. Routines are divided into sections, General Purpose Routines, Logging, Plotting, Monitoring and Macros
specific to 1-ID

2.1 General Purpose Routines

Note that the ascan() and dscan() are affected by what is used in SetDet() and possibly spec.SetMon()
as well as the Logging configuration.

General routines Description
specdate() Returns the date/time formated like Spec
SetScanFile() Open a file for scan output
ascan() Scan a single motor on a fixed range
dscan() Scan a single motor on a range relative to current position
RefitLastScan() Fit a user-supplied function to a user-supplied function
SendTextEmail() Sends an e-mail message to one or more addresses
UserIn() Prompts a user for input

2.2 Logging

An important set of configuration parameters is that which determine what values are recorded. During data collection,
for example, after each ascan() or dscan() data point. Also, for use in defining macros, the values can also be
saved to a log file using write_logging_parameters().

17

SPECpy Documentation, Release 1.1.7Nov

Logging routines Description
init_logging() Initializes the list of items to be reported
show_logging() Displays a list of the items that will be logged
make_log_obj_PV() Define Logging Object that records a PV value
make_log_obj_Global() Define Logging Object that records a global variable
make_log_obj_PVobj() Define Logging Object that records a value from a PVobj object
make_log_obj_motor() Define Logging Object that records a motor position.
make_log_obj_scaler() Define Logging Object that records a scaler channel value.
log_it() Adds a Logging Object to the list of items to be reported
add_logging_PV() Adds a PV to the list of items to be reported
add_logging_Global() Adds a Global variable to the list of items to be reported
add_logging_PVobj() Adds a PV object to the list of items to be reported
add_logging_motor() Adds a motor reference to the list of items to be reported
add_logging_scaler() Adds a scaler channel to the list of items to be reported
write_logging_header() Writes a header line with labels for each logged item
write_logging_parameters() Write the current value of each logged variable

Two examples for setting up logging (new method):

>>> import macros
>>> macros.init_logging()
>>> GE_prefix = ’GE2:cam1:’
>>> macros.log_it(macros.make_log_obj_PV(’GE_fname’,GE_prefix+"FileName",as_string=True))
>>> macros.log_it(macros.make_log_obj_PV(’GE_fnum’,GE_prefix+"FileNumber"))
>>> macros.log_it(macros.make_log_obj_motor(spec.samX))
>>> macros.log_it(macros.make_log_obj_scaler(9))
>>> macros.log_it(macros.make_log_obj_Global(’var S9’,’spec.S[9]’))
>>> macros.log_it(macros.make_log_obj_PV(’p1Vs’,"1idc:m64.RBV"))

Note that the make_log_obj_scaler and make_log_obj_Global calls above will record the same value (though with
different headings), but the make_log_obj_scaler is a better choice as the second option could produce the wrong
value if use of a second scaler is later added to a script.

Old method (does the same as the previous) is:

>>> import macros
>>> macros.init_logging()
>>> GE_prefix = ’GE2:cam1:’
>>> macros.add_logging_PV(’GE_fname’,GE_prefix+"FileName",as_string=True)
>>> macros.add_logging_PV(’GE_fnum’,GE_prefix+"FileNumber")
>>> macros.add_logging_motor(spec.samX)
>>> macros.add_logging_scaler(9)
>>> macros.add_logging_Global(’var S9’,’spec.S[9]’)
>>> macros.add_logging_PV(’p1Vs’,"1idc:m64.RBV")

Example for use of logging in a script:

>>> mac.write_logging_header(logname)
>>> spec.umv(spec.mts_y,stY)
>>> for iLoop in range(nLoop):
>>> spec.umvr(spec.mts_y,dY)
>>> count_em(Nframe*tframe)
>>> GE_expose(fname, Nframe, tframe)
>>> wait_count()
>>> get_counts()
>>> mac.write_logging_parameters(logname)
>>> mac.beep_dac()

This code step-scans motor mts_y. It writes a header to the log file at the beginning of the operation and then logs

18 Chapter 2. Module macros: Additional SPEC-like emulation

SPECpy Documentation, Release 1.1.7Nov

parameters after each measurement. Measurements are done in GE_expose and the default scaler, which are run at the
same time.

Note that it can be useful to put differing sets of logging configurations into files where they can be invoked as needed
using execfile(xxx.py) [where xxx.py is the name of the file to be read]. Do not use import for this task because import
will process the file when it is referenced first, but will not do anything if one attempts to import the file again (to reset
values back after a different setting has been used). One must use reload to force that.

2.3 Plotting

Similar to logging, it is also possible to designate that values can be plotted as part of a script. A Logging Object (from
the make_log_obj_...() routines) is needed for each item that will be plotted.

Plotting routines Description
make_log_obj_PV() Define Logging Object that records a PV value
make_log_obj_Global() Define Logging Object that records a global variable
make_log_obj_PVobj() Define Logging Object that records a value from a PVobj object
make_log_obj_motor() Define Logging Object that records a motor position.
make_log_obj_scaler() Define Logging Object that records a scaler channel value.
DefineLoggingPlot() Creates a plot (if needed) or tab on tab to display values and register items to be

plotted.
UpdateLoggingPlots() Read and display all parameters added to plot in DefineLoggingPlot().
InitLoggingPlot() Clear out plotting definitions from previous calls to DefineLoggingPlot().

Examples:

>>> macros.DefineLoggingPlot(
... ’I vs pos’,
... macros.make_log_obj_motor(spec.samX),
... macros.make_log_obj_scaler(2),
...)
>>> spec.umv(spec.samX,2)
>>> for iLoop in range(30):
... spec.umvr(spec.samX,0.05)
... spec.ct(1)
... macros.UpdateLoggingPlots()

In the above example, a scaler channel is read and plotted against a motor position.

>>> macros.DefineLoggingPlot(
... ’I vs time’,
... macros.make_log_obj_Global(’time (sec)’,’spec.ELAPSED’),
... macros.make_log_obj_scaler(2),
... macros.make_log_obj_scaler(3),
...)
>>> spec.initElapsed()
>>> for iLoop in range(30):
... spec.ct(1)
... macros.UpdateLoggingPlots()

In the above example, two scaler channels are plotted against elapsed time.

2.3. Plotting 19

SPECpy Documentation, Release 1.1.7Nov

2.4 Monitoring

Monitoring of PVs is used to record values of selected PVs when any designated PV changes. Optionally, only when
that PV changes to a specific value or the recording can be limited to not occur more than a maximum frequency. It
may be best to perform monitoring in a process separate from the one making changes to EPICS PVs.

Monitoring routines Description
DefMonitor() Set up a PV to be monitored
StartAllMonitors() Start the monitoring operation

Monitor definition examples:

>>> spec.EnableEPICS()
>>> macros.DefMonitor(’/tmp/tst’,’1ide1:m1.VAL’,
... (’1id:scaler1.S2’,’1id:scaler1.S3’,’1ide1:m1.RBV’,’1ide1:m1.VAL’)
...)
>>> macros.StartAllMonitors()

This will report the values of four PVs every time that PV 1ide1:m1.VAL is changed.

>>> macros.DefMonitor(’/tmp/tst’,’1ide1:m1.RBV’,
... (’1id:scaler1.S3’,’1ide1:m1.RBV’,’1ide1:m1.VAL’),
... pvvalue=0.0)
>>> macros.StartAllMonitors()

This will report three PVs, but only when PV 1ide1:m1.RBV is changed to 0.0 (within 0.00001)

>>> macros.DefMonitor(’/tmp/tst’,’1ide1:m1.RBV’,
... (’1id:scaler1.S2’,’1id:scaler1.S3’,’1ide1:m1.RBV’,’1ide1:m1.VAL’),
... delay=1.0)
>>> macros.StartAllMonitors()

This will report three PVs, every time that PV 1ide1:m1.RBV is changed, but only a maximum of one change will be
reported each second.

2.5 Macros specific to 1-ID

These macros reference 1-ID PV’s or are customized for 1-ID in some other manner.

1-ID specific routines Description
beep_dac() Causes a beep to sound
Cclose() Close 1-ID fast shutter in B hutch
Copen() Open 1-ID fast shutter in B hutch
shutter_sweep() Set 1-ID fast shutter to external control
shutter_manual() Set 1-ID fast shutter to manually control
check_beam_shutterA() Open 1-ID Safety shutter to bring beam into 1-ID-A
check_beam_shutterC() Open 1-ID Safety shutter to bring beam into 1-ID-C
Sopen() Same as check_beam_shutterC(), bring beam into 1-ID-C
MakeMtrDefaults() Create a file with default motor assignments
SaveMotorLimits() Create a file with soft limits for off-line simulations

2.6 Complete Function Descriptions

The functions available in this module are listed below.

20 Chapter 2. Module macros: Additional SPEC-like emulation

SPECpy Documentation, Release 1.1.7Nov

SpecPy.macros.Cclose()
Close 1-ID fast shutter in B hutch

SpecPy.macros.Copen()
Open 1-ID fast shutter in B hutch

SpecPy.macros.DefMonitor(fileprefix, pv, monitorlist, pvvalue=None, delay=None)
Write values of PVs in monitorlist each time that PV pv changes, values are written to a file named by fileprefix
+ timestamp optionally, values are written only if the PV is set to value pvvalue (if not None) and optionally
only recording the first change in a period of delay seconds (if not None):

Monitoring starts when StartAllMonitors() is called.

Parameters

• fileprefix (str) – defines name of file to use

• pv (str) – PV to monitor

• monitorlist (list) – list of PVs to report

• pvvalue (?) – report monitored PV only if this value is obtained

• delay (float) – do not log changes more frequently than this frequency in seconds

see Monitoring for an example of use.

SpecPy.macros.DefineLoggingPlot(tablbl, Xvar, *args)
Creates a plot window (if needed) or tab on plot to display values. Parameters include a label for the tab, a
Logging Object that will be used as an x-value and as many Logging Object as desired (minimum 1) that will
be define y-values. Each time this routine is called, a new plot tab is called. As many plot tabs can be created
and populated as desired.

see Plotting for an example of use.

Parameters

• tablbl (str) – a label to place on the plot tab

• Xvar (object) – a reference to a Logging Object created by
make_log_obj_PV(), make_log_obj_Global(), make_log_obj_PVobj(),
make_log_obj_motor() or make_log_obj_scaler()

• Yvar (object) – a reference to a Logging Object created by
make_log_obj_PV(), make_log_obj_Global(), make_log_obj_PVobj(),
make_log_obj_motor() or make_log_obj_scaler()

• Yvar1 (object) – a reference to a Logging Object created by
make_log_obj_PV(), make_log_obj_Global(), make_log_obj_PVobj(),
make_log_obj_motor() or make_log_obj_scaler()

class SpecPy.macros.FitClass(x, y)
Defines a prototype class for deriving fitting class implementations. A fitting class should define at least two
method: __init__ and Eval.

__init__(x,y) computes a list of very approximate values for the fit parameters, good enough to be used as
the starting values in the fit. The number of terms computed determines the number of parameter values
that will be fit.

Eval(parms,x) provides the function to be fit.

optionally, Format(parms) is used to return a nicely-formatted text string with the fitted parameters.

2.6. Complete Function Descriptions 21

SPECpy Documentation, Release 1.1.7Nov

Eval(parm, x)
Evaluate the fitting function and return a “y” value computed for each value in x. Ideally this expression
computes all values in a single NumPy expression, but looping is allowed. Both parameters should be lists,
tuples or numpy arrays.

Parameters

• parm (list,tuple,etc.) – parameters in the same order as returned by StartParms()

• x (list,tuple,etc.) – values of the independent parameter (scanned variable) for evaluation
of the function.

Format(parm)
This prints the parameters, potentially in a way that explains what they mean. If not overridden, one gets
“Parameter values = <list>”

Parameters parm (list,tuple,etc.) – parameters in the same order as returned by StartParms()

StartParms()
Return the starting parameter values determined in __init__()

class SpecPy.macros.FitGauss(x, y)
Define a function for fitting with a Gaussian.

Parameters are defined as:

index value
[0] location of peak
[1] function value at maximum, less parm[3]
[2] width as FWHM
[3] added to all points

Eval(parm, x)
Evaluate the Gaussian

Format(parm)
Prints the parameters

class SpecPy.macros.FitSawtooth(x, y, Symmetric=True)
Define a function for fitting with a symmetric or asymmetric saw-tooth function.

Parameters are defined as:

index value
[0] location of peak
[1] function value at maximum
[2] added to all points
[3] asymmetric: slope on leading side of peak (+ is rising) symmetric: slope on both sides

of peak
[4] asymmetric: slope on trailing side of peak (+ is falling)

Parameters Symmetric (bool) – determines if the SawTooth is symmetric (True) or asymmetric
(False), meaning that the leading side and the trailing side of the peak can have different slopes.

Eval(parm, x)
Evaluate the sawtooth function

SpecPy.macros.InitLoggingPlot()
Clear out plot definitions from previous calls to DefineLoggingPlot(). Prevents updates from occuring
in UpdateLoggingPlot(), but does not delete any tabs or the window.

22 Chapter 2. Module macros: Additional SPEC-like emulation

SPECpy Documentation, Release 1.1.7Nov

SpecPy.macros.MakeMtrDefaults(fil=None, out=None)
Routine in Development: Creates an initialization file from a spreadsheet describing the 1-ID beamline motor
assignments

Parameters

• fil (str) – input file to read. By default opens file ../1ID/1ID_stages.csv relative to the loca-
tion of the current file.

• out (str) – output file to write. By default writes file ../1ID/mtrsetup.py.new Note that if the
default file name is used, the output file must be renamed before use to mtrsetup.py

SpecPy.macros.RefitLastScan(FitClass, **kwargs)
Fit and plot an arbitrary equation to data from the last ascan

Parameters FitClass (class) – a class that defines a minumum of two methods, one to define a
fitting function and the other to determine rough starting values for the fitting function. See
FitGauss or FitSawtooth for examples of Fitting classes.

Optional: additional keyword parameters will be passed for the creation of a FitClass object.

Returns an optimized list of parameters or None if the fit fails

Example:

>>> macros.RefitLastScan(macros.FitSawtooth)
Parameter values =1.45, 28.5, 1.5, 2.1053
array([1.44999999, 28.50005241, 1.4999749 , 2.10525894])

or

>>> macros.RefitLastScan(macros.FitSawtooth, Symmetric=False)
Parameter values =1.45, 28.5, 1.5, 2.1053, 2.1053
array([1.44999999, 28.5000524 , 1.49997491, 2.10525896, 2.10525891])

SpecPy.macros.SaveMotorLimits(out=None)
Routine in Development: Creates an initialization file for simulation use with the limits for every motor PV that
is found in the current 1-ID beamline motor assignments. import mtrsetup.py or equivalent first. Scans each PV
from 1 to the max number defined.

Parameters out (str) – output file to write, writes file motorlimits.dat.new in the same directory as
this file by default. Note that if the default file name is used, the output file must be renamed
before use to motorlimits.dat

SpecPy.macros.SendTextEmail(recipientlist, msgtext, subject=’specpy auto msg’, recipient-
name=None, senderemail=‘1ID@aps.anl.gov’)

Send a short text string as an e-mail message. Uses the APS outgoing email server (apsmail.aps.anl.gov) to send
the message via SMTP.

Parameters

• recipientlist (str) – A string containing a single e-mail address or a list or tuple (etc.) con-
taining a list of strings with e-mail addresses.

• msgtext (str) – a string containing the contents of the message to be sent.

• subject (str) – a subject to be included in the e-mail message; defaults to “specpy auto msg”.

• recipientname (str) – a string to be used for the recipient(s) of the message. If not specified,
no “To:” header shows up in the e-mail. This should be an e-mail address or @aps.anl.gov
is appended.

2.6. Complete Function Descriptions 23

SPECpy Documentation, Release 1.1.7Nov

• senderemail (str) – a string with the e-mail address identified as the sender of the e-mail;
defaults to “1ID@aps.anl.gov”. This should be an e-mail address or @aps.anl.gov is ap-
pended.

Examples:

>>> msg = ’This is a very short e-mail’
>>> macros.SendTextEmail([’toby@sigmaxi.net’,’brian.h.toby@gmail.com’],msg, subject=’test’)

or with a single address:

>>> msg = """Dear Brian,
... How about a longer message?
... Thanks, Brian
... """
>>> to = "toby@anl.gov"
>>> macros.SendTextEmail(to,msg,recipientname=’spamee@anl.gov’,senderemail=’spammer@anl.gov’)

A good way to use this routine is in a try/except block:

>>> userlist = [’user@univ.edu’,’contact@anl.gov’]
>>> try:
>>> macros.write_logging_header(logname)
>>> spec.umv(spec.mts_y,stY)
>>> for iLoop in range(nLoop):
>>> spec.umv(spec.mts_x2,stX)
>>> for xLoop in range(nX):
>>> GE_expose(fname, Nframe, tframe)
>>> macros.write_logging_parameters(logname)
>>> spec.umvr(spec.mts_x2,dX)
>>> spec.umvr(spec.mts_y,dY)
>>> macros.beep_dac()
>>> except Exception:
>>> import traceback
>>> msg = "An error occurred at " + macros.specdate()
>>> msg += " in file " + __file__ + "\n\n"
>>> msg += str(traceback.format_exc())
>>> macros.SendTextEmail(userlist, msg, ’Beamline Abort’)

SpecPy.macros.SetScanFile(outfile=None)
Set a file for output from ascan, etc. The output is intended to closely mimic what spec produces in ascan and
dscan.

Parameters outfile (str) – the file name to be opened. If not specified, output is sent to the terminal.
If the file is new (or is the not specified) a header listing all motors, etc. is printed

SpecPy.macros.ShowPlots()
Pause to show plot screens. Call this at the end of a script, if needed.

SpecPy.macros.Sopen()
If not already open, open 1-ID-C Safety shutter to bring beam into 1-ID-C. Keep trying in an infinite loop until
the shutter opens.

SpecPy.macros.StartAllMonitors(sleep=True)
Start the monitoring defined in DefMonitor. Optionally delay until control-C is pressed. The control-C operation
closes all files and clears the monitoring information.

Parameters sleep (bool) – if True (default) start an infinite loop of one second delays

see Monitoring for an example of use.

24 Chapter 2. Module macros: Additional SPEC-like emulation

mailto:1ID@aps.anl.gov

SPECpy Documentation, Release 1.1.7Nov

SpecPy.macros.UpdateLoggingPlots()
Read all current values in plot and display in plots

see Plotting for an example of use.

SpecPy.macros.UserIn(parname, default, typ)
Prompt a user for input.

For reasons unclear, this is not raising an Exception on Control-C on Linux, but Control D does raise an excep-
tion, so use that.

Parameters

• parname (str) – a string to be given to the user to tell them what to input

• default ((any)) – a default value, if no input is provided, use None to force user input

• typ (type) – a data type, such as int, float, or str

Returns the value provided by the user in the selected type

Examples:

>>> UserIn(’test’,2.0,float)
test (2.0): x
Invalid, try again
test (2.0): 3.1
3.1

>>> UserIn(’test’,None,float)
test (None):
Invalid, try again
test (None): 4
4.0

>>> UserIn(’test’,2,int)
test (2): 2.0
Invalid, try again
test (2): 2
2

SpecPy.macros.add_logging_Global(txt, var)
Define a global variable to be recorded when write_logging_parameters() is called.

Parameters

• txt (str) – defines a text string, preferably short, to be used when
write_logging_header() is called as a header for the item to be logged.

• var (str) – defines a Python variable that will be logged each time
write_logging_parameters() is called. Note that this is read inside the
macros module so the variable must be defined inside that module or must be prefixed by a
reference to a module referenced in that module, e.g. spec.S[0]

see Logging for an example of use.

SpecPy.macros.add_logging_PV(txt, PV, as_string=False)
Define a PV to be recorded when write_logging_parameters() is called.

Parameters

• txt (str) – defines a text string, preferably short, to be used when
write_logging_header() is called as a header for the item to be logged.

2.6. Complete Function Descriptions 25

SPECpy Documentation, Release 1.1.7Nov

• PV (str) – defines an EPICS Process Variable that will be read and logged each time
write_logging_parameters() is called.

• as_string (bool) – if True, the PV will be translated to a string. When False (default) the
native data type will be used. Use of True is of greatest for waveform records that are used
to store character strings as a series of integers.

see Logging for an example of use.

SpecPy.macros.add_logging_PVobj(txt, PVobj, as_string=False)
Define a PVobj to be recorded when write_logging_parameters() is called.

Parameters

• txt (str) – defines a text string, preferably short, to be used when
write_logging_header() is called as a header for the item to be logged.

• PV (epics.PV) – defines a PyEpics PV object that is connected to an EPICS Process
Variable. The PV method .get() will be used to read that PV to log it each time
write_logging_parameters() is called.

• as_string (bool) – if True, the PV value will be translated to a string. When False (default)
the native data type will be used. Use of True is of greatest for waveform records that are
used to store character strings as a series of integers.

see Logging for an example of use.

SpecPy.macros.add_logging_motor(mtr)
Define a motor object to be recorded when write_logging_parameters() is called. Note that the head-
ing text string is defined as the motor’s symbol (see spec.DefineMtr()).

Parameters mtr (str) – a reference to a motor object, returned by spec.DefineMtr() or de-
fined in the motor symbol. The position of the motor will be read and logged each time
write_logging_parameters() is called.

see Logging for an example of use.

SpecPy.macros.add_logging_scaler(channel, index=0)
Define a scaler channel to be recorded when write_logging_parameters() is called. Note
that the heading text string is defined as the scaler’s label (which is read from the scaler when
spec.DefineScaler() is run).

Parameters

• channel (str) – a channel number for a scaler, which can be any value between 0 and
one less than the number of channels. The last-read value of that scaler logged each time
write_logging_parameters() is called.

• index (int) – an index for the scaler, if more than one is be defined (see
DefineScaler()). The default (0) is used if not specified.

see Logging for an example of use.

SpecPy.macros.ascan(mtr, start, finish, npts, count, index=0, settle=0.0, _func=’ascan’)
Scan one motor and record parameters set with logging to the scanfile (see func:SetScanFile).

Parameters

• mtr (str) – a reference to a motor object, returned by spec.DefineMtr() or defined in
the motor symbol.

• start (float) – starting position for scan

• finish (float) – ending position for scan

26 Chapter 2. Module macros: Additional SPEC-like emulation

SPECpy Documentation, Release 1.1.7Nov

• npts (int) – number of points for scan

• count (float) – count time. Counting is on time (sec) if count is 0 or positive; Counting is
on monitor if count < 0

• index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

• settle (float) – a time to wait (sec) after the motor has been moved before counting is starting.
Default is 0.0 which means no delay

Example:

>>> spec.SetDet(2)
>>> macros.ascan(spec.samX,1,2,21,1,settle=.1)

It is recommended that if ascan will be run in command line, where python commands are typed into a
console window, that ipython be used in pylab mode (ipython --pylab).

SpecPy.macros.beep_dac(beeptime=1.0)
Set the 1-ID beeper on for a fixed period, which defaults to 1 second uses PV object beeper (defined as
1id:DAC1_8.VAL) makes sure that the beeper is actually turned on and off throws exception if beeper fails

Parameters beeptime (float) – time to sound the beeper (sec), defaults to 1.0

SpecPy.macros.check_beam_shutterA()
If not already open, open 1-ID-A Safety shutter to bring beam into 1-ID-A. Keep trying in an infinite loop until
the shutter opens.

SpecPy.macros.check_beam_shutterC()
If not already open, open 1-ID-C Safety shutter to bring beam into 1-ID-C. Keep trying in an infinite loop until
the shutter opens.

SpecPy.macros.dscan(mtr, start, finish, npts, count, index=0, settle=0.0)
Relative scan of motor, see func:ascan,

Parameters

• mtr (str) – a reference to a motor object, returned by spec.DefineMtr() or defined in
the motor symbol.

• start (float) – starting position for scan, relative to current motor position

• finish (float) – ending position for scan, relative to current motor position

• npts (int) – number of points for scan

• count (float) – count time. Counting is on time (sec) if count is 0 or positive; Counting is
on monitor if count < 0

• index (int) – an index for the scaler, if more than one will be defined (see
DefineScaler()). The default (0) is used if not specified.

• settle (float) – a time to wait (sec) after the motor has been moved before counting is starting.
Default is 0.0 which means no delay

Example:

>>> spec.SetDet(2)
>>> macros.dscan(spec.samX,-1,1,21,1,settle=.1)

It is recommended that if dscan will be run in command line, where python commands are typed into a
console window, that ipython be used in pylab mode (ipython --pylab).

2.6. Complete Function Descriptions 27

SPECpy Documentation, Release 1.1.7Nov

SpecPy.macros.init_logging()
Initialize the list of data items to be logged

see Logging for an example of use.

SpecPy.macros.log_it(LogObj)
Add a Logging Object into list to be recorded when write_logging_parameters() is called.

Parameters LogObj (object) – a reference to a Logging Object created by
make_log_obj_PV(), make_log_obj_Global(), make_log_obj_PVobj(),
make_log_obj_motor() or make_log_obj_scaler()

SpecPy.macros.make_log_obj_Global(txt, var)
Define Logging Object that records a global variable

Parameters

• txt (str) – defines a text string, preferably short, to be used when
write_logging_header() is called as a header for the item to be logged.

• var (str) – defines a Python variable that will be logged each time
write_logging_parameters() is called. Note that this is read inside the
macros module so the variable must be defined inside that module or must be prefixed by a
reference to a module referenced in that module, e.g. spec.S[0]

see Logging for an example of use.

SpecPy.macros.make_log_obj_PV(txt, PV, as_string=False)
Define Logging Object that records a PV value

Parameters

• txt (str) – defines a text string, preferably short, to be used when
write_logging_header() is called as a header for the item to be logged.

• PV (str) – defines an EPICS Process Variable that will be read and logged each time
write_logging_parameters() is called.

• as_string (bool) – if True, the PV will be translated to a string. When False (default) the
native data type will be used. Use of True is of greatest for waveform records that are used
to store character strings as a series of integers.

see Logging for an example of use.

SpecPy.macros.make_log_obj_PVobj(txt, PVobj, as_string=False)
Define Logging Object that records a value from a PVobj object

Parameters

• txt (str) – defines a text string, preferably short, to be used when
write_logging_header() is called as a header for the item to be logged.

• PV (epics.PV) – defines a PyEpics PV object that is connected to an EPICS Process
Variable. The PV method .get() will be used to read that PV to log it each time
write_logging_parameters() is called.

• as_string (bool) – if True, the PV value will be translated to a string. When False (default)
the native data type will be used. Use of True is of greatest for waveform records that are
used to store character strings as a series of integers.

see Logging for an example of use.

28 Chapter 2. Module macros: Additional SPEC-like emulation

SPECpy Documentation, Release 1.1.7Nov

SpecPy.macros.make_log_obj_motor(mtr)
Define Logging Object that records a motor position. Note that the heading text string is defined as the motor’s
symbol (see spec.DefineMtr()).

Parameters mtr (str) – a reference to a motor object, returned by spec.DefineMtr() or de-
fined in the motor symbol. The position of the motor will be read and logged each time
write_logging_parameters() is called.

see Logging for an example of use.

SpecPy.macros.make_log_obj_scaler(channel, index=0)
Define Logging Object that records a scaler channel value. Note that the heading text string is defined as the
scaler’s label (which is read from the scaler when spec.DefineScaler() is run).

Parameters

• channel (str) – a channel number for a scaler, which can be any value between 0 and
one less than the number of channels. The last-read value of that scaler logged each time
write_logging_parameters() is called.

• index (int) – an index for the scaler, if more than one is be defined (see
DefineScaler()). The default (0) is used if not specified.

see Logging for an example of use.

SpecPy.macros.show_logging()
Show the user the current logged items

SpecPy.macros.shutter_manual()
Set 1-ID fast shutter so that it will not be controlled by the GE TTL signal and can be manually opened and
closed with Copen() and Cclose()

SpecPy.macros.shutter_sweep()
Set 1-ID fast shutter so that it will be controlled by an external electronic control (usually the GE TTL signal)

SpecPy.macros.specdate()
format current date/time as produced in Spec

Returns the current date/time as a string, formatted like “Thu Oct 04 18:24:14 2012”

Example:

>>> macros.specdate()
’Thu Oct 11 16:16:39 2012’

SpecPy.macros.write_logging_header(filename=’‘)
Write a header for parameters recorded when write_logging_parameters() is called.

Parameters filename (str) – a filename to be be used for output. If not specified, the output is sent
to the terminal window.

see Logging for an example of use.

SpecPy.macros.write_logging_parameters(filename=’‘)
Record the current value of all items tagged to be recorded in add_logging_PV(),
add_logging_Global(), add_logging_PVobj(), add_logging_motor() or
add_logging_scaler().

Parameters filename (str) – a filename to be be used for output. If not specified, the output is sent
to the terminal window.

see Logging for an example of use.

2.6. Complete Function Descriptions 29

SPECpy Documentation, Release 1.1.7Nov

Area Detector Implementation Module

30 Chapter 2. Module macros: Additional SPEC-like emulation

CHAPTER

THREE

MODULE AD: AREA-DETECTOR
ACCESS

These routines provide a general framework for control of Area Detectors (AD). Also included is a specific implemen-
tation for the commonly-used area detectors in 1-ID, which are summarized in Defined Commands, below.

Kludged: is added to all string caput calls (in AD_set())

3.1 Detector Access Routines

These routines are used to change or read parameters for detectors, or to show information about how these commands
have been configured.

Access routines Description
AD_get() Read an area detector parameter
AD_set() Set an area detector parameter
AD_acquire() Set the filename, count time and frames and collect
AD_done() Test if the detector(s) have completed data collection
AD_show() Shows commands options for AD_get() and AD_set()
AD_cmds() Returns but does not print commands options for AD_get() and AD_set()

3.2 Detector Setup Routines

These routines are used inside the module and are likely only changed by beamline staff.

Setup routines Description
DefineAreaDetector() Define an area detector for later use
defADcmd() Define parameters to set up an area detector command

3.3 Defined Commands

Below are lists of the commands that can be used in AD_get() and AD_set(), for each detector (GE, Retiga,
ScintX):

31

SPECpy Documentation, Release 1.1.7Nov

3.3.1 Defined commands for GE detectors

command Explanation data type validator
acquire Trigger Data collection int (1,)
acquire_time Data collection time/frame (sec) float val > 0
autoincrement Overwrite current file or increment filenumber int (0, 1)
autosave Save images to file: No=0, Yes=1 int (0, 1)
autostore Save images to file: No=0, Yes=1 int (0, 1)
filename Set image filename str None
filenumber Next file number int val > 0
filepath Full path for data file str None
frames number of frames int 0 < val < 300
state Data collection state int None
trigger_mode Triggering: Angio=0, Rad=1, UserSingle=2, MultiDet=3 int (0, 1, 2, 3)

3.3.2 Defined commands for Retiga detectors

command Explanation data type validator
acquire Trigger Data collection int (1,)
acquire_time Data collection time/frame (sec) float val > 0
autoincrement Overwrite current file or increment filenumber int (0, 1)
autosave Save images to file: No=0, Yes=1 int (0, 1)
autostore Save images to file: No=0, Yes=1 int (0, 1)
filename Set image filename str None
filenumber Next file number int val > 0
filepath Full path for data file str None
frames number of frames int 0 < val < 300
transfer Transfer EPICS values to FPGA int (1,)
trigger_mode Triggering: free=0, edge: Hi=1, low=2, Pulse: Hi=3, low=5, s int 0 <= val <= 8

3.3.3 Defined commands for ScintX detectors

command Explanation data type validator
acquire Trigger Data collection int (1,)
acquire_time Data collection time/frame (sec) float val > 0
autoincrement Overwrite current file or increment filenumber int (0, 1)
autosave Save images to file: No=0, Yes=1 int (0, 1)
autostore Save images to file: No=0, Yes=1 int (0, 1)
filename Set image filename str None
filenumber Next file number int val > 0
filepath Full path for data file str None
frames number of frames int 0 < val < 300
state Data collection state int None
trigger_mode Triggering mode: Internal=0, External=1 int (0, 1)
video_mode Format: 0=4024x2680, 2=2012x1340 int (0, 2)

3.4 Complete Function Descriptions

The functions available in this module are listed below.

32 Chapter 3. Module AD: Area-Detector access

SPECpy Documentation, Release 1.1.7Nov

SpecPy.AD.AD_acquire(detsyms, filename, counttime, frames=1, wait=False)
Set parameters for an area detector and collect image(s)

Parameters

• detsyms (object) – An area detector variable (or name as a string), as defined in
DefineAreaDetector(). Alternately, a list of area detectors variable or names (as
strings) can be supplied.

• filename (str) – The name of the data file to be used

• counttime (float) – The data collection pre frame time to be used (sec)

• frames (int) – The number of images to be recorded

• wait (bool) – If False (default) return immediately; if True, return after waiting the appropri-
ate amount of time and when the state command (if defined) indicates the data collection
is done.

SpecPy.AD.AD_cmds(detsym=None)
Returns all the commands defined for a particular detector, or with any detector. Does not print.

Parameters detsym (object) – An area detector variable (or name as a string), as defined in
DefineAreaDetector(). Default is to only list commands that can be used with all de-
tectors.

Returns a list of allowed commands

SpecPy.AD.AD_done(detsyms, wait=True)
Test and optionally wait for the detector(s) have completed data collection

Parameters

• detsyms (object) – An area detector variable (or name as a string), as defined in
DefineAreaDetector(). Alternately, a list of area detectors variable or names (as
strings) can be supplied.

• wait (bool) – If False test and return immediately; if True (default), return after the state
command (if defined) indicates the data collection is done for each detector.

Returns True if all detector(s) are done; False is wait is False and any detectors are not done; or
None if after 30 seconds, any detector is not complete

SpecPy.AD.AD_get(detsyms, cmd, ignoreOK=False)
Read a parameter from an area detector

Parameters

• detsyms (object) – An area detector variable (or name as a string), as defined in
DefineAreaDetector() or a list of area detector variables or strings. If a list (or
tuple) of detectors is used, the function may return a list of values (but only if they differ.)

• cmd (str) – a command string that has been defined using defADcmd()

• ignoreOK (bool) – if ignoreOK is False (default) an exception will be raised if command
cmd is not defined for a detector. If True, the command will be ignored

Returns the as-read parameter. The type will be determined by the PV associated with the command.
If detsyms is a list and the read values differ, then a list of values is returned. Otherwise, only
the (common) value is return.

Examples:

3.4. Complete Function Descriptions 33

SPECpy Documentation, Release 1.1.7Nov

>>> AD.DefineAreaDetector(’GE1’, ’GE’, ’GE1:cam1’)
>>> val = AD.AD_get(AD.GE1,’acquire_time’)

or

>>> val = AD.AD_get(’GE1’,’acquire_time’)

also

>>> hydra = (AD.GE1,AD.GE2,AD.GE3,AD.GE4)
>>> val = AD.AD_get(hydra,’trigger_mode’)
>>> try:
>>> if len(val) == 4 and not isinstance(val,str):
>>> print ’values disagree’
>>> except TypeError:
>>> pass

SpecPy.AD.AD_set(detsyms, cmd, value, ignoreOK=False)
Set a parameter for an area detector. This routine has been patched to add a to strings, to fix a problem in EPICS.

Parameters

• detsyms (object) – An area detector variable (or name as a string), as defined in
DefineAreaDetector(). Alternately, a list of area detectors variable or names (as
strings) can be supplied. The command (cmd) must be defined for all supplied detectors, or
an exception occurs.

• cmd (str) – a command that has been defined using defADcmd()

• value (str) – The value to set the parameter. This value will be set to the type defined for
the command from defADcmd() if possible and will be checked against the enumeration
range, if one is supplied. If the type conversion fails or the check fails, an exception is
raised.

• ignoreOK (bool) – if ignoreOK is False (default) an exception will be raised if command
cmd is not defined for a detector. If True, the command will be ignored

Returns the as-read parameter. The type will be determined by the PV associated with the command.

Examples:

>>> AD.DefineAreaDetector(’GE1’, ’GE’, ’GE1:cam1’)
>>> val = AD.AD_set(AD.GE1,’acquire_time’,3)

or

>>> val = AD.AD_set(’GE1’,’acquire_time’,3)

also

>>> hydra = (AD.GE1,AD.GE2,AD.GE3,AD.GE4)
>>> val = AD.AD_set(hydra,’trigger_mode’,0)

SpecPy.AD.AD_show(detsym=None, allowprint=True)
Shows all the commands defined for a particular detector, or with any detector.

Parameters

• detsym (object) – An area detector variable (or name as a string), as defined in
DefineAreaDetector(). Default is to only list commands that can be used with all
detectors.

• allowprint (bool) – If True (default) prints a list of the allowed commands

34 Chapter 3. Module AD: Area-Detector access

SPECpy Documentation, Release 1.1.7Nov

Returns a list of allowed commands

SpecPy.AD.DefineAreaDetector(detsym, detectortype, controlprefix, imageprefix=None, com-
ment=’‘)

Define an area detector for use in this module

Parameters

• detsym (str) – a symbolic name for the detector. A global variable is defined in this module’s
name space with this name, This must be unique; exception specException is raised if a
name is reused.

• detectortype (str) – the type of the detector. This must match one of the entries in global
variable detectorTypeList (case sensitive).

• controlprefix (str) – the prefix for the detector PV (dev:camN). Omit the detector record
field names (.NumImages, etc.). Inclusion of a final colon (‘:’) is optional.

• imageprefix (str) – the prefix for the detector PV (dev:fmt). Omit the detector record field
names (.FileNumber, etc.). Inclusion of a final colon (‘:’) is optional. If not specified,
defaults to the value for controlprefix

• comment (string) – a optional human-readable text field that describes the detector.

Returns detector object created for the detector

Example:

>>> DefineAreaDetector(’GE1’, ’GE’, ’GE1:cam1’, comment=’bottom’)
>>> DefineAreaDetector(’GE2’, ’GE’, ’GE2:cam1’, comment=’left’)
>>> DefineAreaDetector(’GE3’, ’GE’, ’GE3:cam1’, comment=’top’)
>>> DefineAreaDetector(’GE4’, ’GE’, ’GE4:cam1’, comment=’right’)
>>> DefineAreaDetector(’ScintX’, ’ScintX’, ’ScintX:cam1’, ’ScintX:TIFF1:’)
>>> DefineAreaDetector(’Retiga1’, ’Retiga’, ’QIMAGE1:cam1:’, ’QIMAGE1:TIFF1:’)
>>> DefineAreaDetector(’Retiga2’, ’Retiga’, ’QIMAGE2:cam1:’, ’QIMAGE2:TIFF1:’)

SpecPy.AD.defADcmd(command, setsuffix, readsuffix, comment=’‘, valtyp=<type ‘int’>, det=None,
enum=None)

This is called to create a table of actions to be used for writing to detectors. This will normally only be used
by beamline staff and only inside this routine. Define detector-specific commands first, if they should take
precedence over generic ones.

Parameters

• command (str) – A string to be used in AD_get() and AD_set() to be used to read or
set an area detector parameter

• setsuffix (str) – The PV suffix to be used to set the parameter. This is appended to the end
of controlprefix (if setsuffix begins with one % sign) or imageprefix (if setsuffix begins with
twp % signs). If this is blank, the PV cannot be set.

• readsuffix (str) – The PV suffix to be used to read the parameter. This is appended to the end
of controlprefix (if readsuffix begins with one % sign) or imageprefix (if readsuffix begins
with twp % signs). If this is blank, the PV cannot be read.

• comment (string) – a optional human-readable text field that describes the command.

• valtyp (type) – a data type for the PV. Should be str, float or int (default)

• detectortype (str) – The type of the detector, if the command is not generic. The default is
to define a command that can be used with all area detectors.

3.4. Complete Function Descriptions 35

SPECpy Documentation, Release 1.1.7Nov

• enum (str) – A list of allowed values for the command, or a statement that must evaluate
as True for the value to be accepted, typically a logical test on variable val. The default is
allow all values.

enum examples:

enum=(0,1,2) – defines three specific allowed values (0, 1 and 2). No others are
valid.

enum=’val > 0’ – requires that the value must be greater than 0.0

enum=’0 <= val <= 10’ – requires the value be 0 or 10 or any value in between

Examples:

>>> # GE detector specific
>>> defADcmd(’trigger_mode’, ’%TriggerMode’, ’%TriggerMode_RBV’,
... ’Triggering: Angio=0, Rad=1, UserSingle=2, MultiDet=3’,
... det=’GE’, enum=(0,1,2,3))
>>> defADcmd(’state’, ’’, ’%DetectorState_RBV’, ’Data collection state’, det=’GE’)
>>> defADcmd(’autostore’, ’%%AutoStore’, ’%%AutoStore_RBV’, ’Save images to file: No=0, Yes=1’,
... det=’GE’, enum=(0,1)) # overrides generic, below
>>> defADcmd(’autosave’, ’%%AutoStore’, ’%%AutoStore_RBV’, ’Save images to file: No=0, Yes=1’,
... det=’GE’, enum=(0,1))
>>> #ScintX detector specific
>>> defADcmd(’trigger_mode’, ’%TriggerMode’, ’%TriggerMode_RBV’,
... ’Triggering mode: Internal=0, External=1’,
... det=’ScintX’, enum=(0,1))
>>> defADcmd(’video_mode’, ’%CCDVideoMode’, ’%CCDVideoMode_RBV’,
... ’Format: 0=4024x2680, 2=2012x1340’, det=’ScintX’,enum=(0,2))
>>> #Retiga detector specific
>>> defADcmd(’transfer’, ’%qInitialize’, ’’, ’Transfer EPICS values to FPGA’, det=’Retiga’, enum=(1,))
>>> defADcmd(’trigger_mode’, ’%TriggerMode’, ’%TriggerMode_RBV’,
... ’Triggering: free=0, edge: Hi=1, low=2, Pulse: Hi=3, low=5, soft=5, Strobe: Hi=6, low=7, last=8’,
... det=’Retiga’, enum=’0 <= val <= 8’)
>>> # Generic
>>> defADcmd(’acquire’, ’%Acquire’, ’’, ’Trigger Data coll.’,enum=(1,))
>>> defADcmd(’acquire_time’, ’%AcquireTime’, ’%AcquireTime_RBV’, ’Data coll. time (sec)’, float, enum=’val > 0’)
>>> defADcmd(’frames’, ’%NumImages’, ’%NumImages_RBV’, ’number of frames (int)’, enum=’0 < val < 300’)
>>> defADcmd(’filename’, ’%%FileName’, ’%%FileName_RBV’, ’Set data filename’, str)
>>> defADcmd(’filenumber’, ’%%FileNumber’, ’%%FileNumber_RBV’, ’Next file number’, int)
>>> defADcmd(’autoincrement’, ’%%AutoIncrement’, ’%%AutoIncrement_RBV’,
... ’Overwrite current file or increment filenumber’, int, enum=(0,1))
>>> defADcmd(’filepath’, ’%%FilePath’, ’%%FilePath_RBV’, ’Full path for data file’,str)

GE Image processing module

36 Chapter 3. Module AD: Area-Detector access

CHAPTER

FOUR

MODULE GE: GE IMAGE PROCESSING

This is a module for reading files and quick processing of data from the GE angiography detector in use at sector 1. It
requires the NumPy package. It does not require the PyEpics package. Most functions in this module work directly
with data files created by the GE detectors, with the exceptions of PlotGEimage() and PlotROIsums(), which
plot images and ROI values, respectively, from other functions in this module.

4.1 Summary

Routines Description
Count_Frames() Determine the number of frames in a GE image file
getGEimage() Read a single entire GE image file
getGE_ROI() Read a section (region of interest) of a GE image file
PlotGEimage() Plot an image or ROI
sumGE_ROIs() Report the average intensity for ROIs in a GE image frame
sumAllGE_ROIs() Reports the average intensity for ROIs for all frames in a file
PlotROIsums() Plots the ROIs values from sumAllGE_ROIs()

4.2 Complete Function Descriptions

The functions available in this module are listed below.

SpecPy.GE.Count_Frames(filename)
Determine the number of frames in a GE file by looking at the file size.

Parameters filename (str) – The filename containing the as-recorded GE images

Returns the number of frames (int).

Example:

>>> ifil = ’/Users/toby/software/work/1ID/data/AZ91_01306.ge2’
>>> GE.Count_Frames(ifil)
220

SpecPy.GE.PlotGEimage(img, title, tablbl, plotlist, region=None, size=(700, 700), imgwin=None)
Create a plot of an image in tabbed window

Parameters

• img (array) – An image, as a numpy array or matplotlib compatible object. Usually this
will be created by getGEimage() or getGE_ROI().

37

SPECpy Documentation, Release 1.1.7Nov

• title (str) – A string with a title for the window

• tablbl (str) – A string with the title for the new tab (should be short)

• plotlist (list) – A list of _ImagePlot objects. As new plots are created in this routine they
are added to this list. The list is used to assign color maps.

• region (list) – A list for four numbers which describes the ROI location for use in adding
offsets for the plot axes labeling. The numbers are:

element # label description
0 xmid x value for central pixel
1 ymid y value for central pixel
2 xwid half-width of ROI in pixels
3 ywid half-width of ROI in pixels

The default is to label the pixels starting from zero.

• size (list) – A list, tuple or wx.size object with the size of the window to be created in pixels.
The default is (700,700)

• imgwin (object) – A plotnotebook object that has been created using
plotnotebook.MakePlotWindow(), usually in a prior call to PlotGEimage().
A value of None (default) causes a new frame (window) to be created.

Returns A reference to the plot window (a plotnotebook object), which will be either imgwin or the
new one created in plotnotebook.MakePlotWindow().

Examples:

>>> import plotnotebook
>>> import GE
>>> plotlist = []
>>> ifil = ’/Users/toby/software/work/1ID/data/AZ91_01306.ge2’
>>> img = GE.getGEimage(ifil,2)
>>> imgwin = GE.PlotGEimage(img,’image window’,’full image’,plotlist)
>>> plotnotebook.ShowPlots()

>>> import plotnotebook
>>> import GE
>>> plotlist = []
>>> ifil = ’/Users/toby/software/work/1ID/data/AZ91_01306.ge2’
>>> ROI = GE.getGE_ROI(ifil,2,(100,200,5,7))
>>> imgwin = GE.PlotGEimage(ROI ,’’,’ROI’,plotlist, (100,200,4,6))
>>> plotnotebook.ShowPlots()

SpecPy.GE.PlotROIsums(datarray, tablbl=’ROIs’, title=’‘, captions=None, size=(700, 700), img-
win=None)

Plots a series of ROIs

Parameters

• datarray (array) – a list of MxN array of average intensity values, as returned by
sumAllGE_ROIs(), where M is the number of frames and N is the number of ROI re-
gion(s).

• tablbl (str) – A string with the title for the new tab. (Should be short; default is “ROIs”.)

• title (str) – A string with a title for the window. Defaults to blank.

• captions (list) – A list of N strings, where each string specifies a legend caption for each of
the N ROI regions. (Default is “ROI #”.)

38 Chapter 4. Module GE: GE Image processing

SPECpy Documentation, Release 1.1.7Nov

• size (list) – A list, tuple or wx.size object with the size of the window to be created in pixels.
The default is (700,700)

• imgwin (object) – A plotnotebook object that has been created using
plotnotebook.MakePlotWindow(), usually in a prior call to PlotGEimage().
A value of None (default) causes a new frame (window) to be created.

Returns A reference to the plot window (a plotnotebook object), which will be either imgwin or the
new one created in plotnotebook.MakePlotWindow().

Example:

>>> regionlist = [ROI_rect(1335,1525,50,50),ROI_rect(1435,1525,50,50),
... ROI_rect(335,1525,50,50),ROI_rect(1935,1525,50,50)]
>>> caps = [str(i[0])+’,’+str(i[1]) for i in regionlist]
>>> ROIarr = GE.sumAllGE_ROIs(imgfile,regionlist)
>>> GE.PlotROIsums(ROIarr, captions=caps)
>>> import plotnotebook
>>> plotnotebook.ShowPlots()

class SpecPy.GE.ROI_rect(xmid, ymid, xwid, ywid)
Defines the rectangle of a region of interest (ROI) by midpoint and width

Each ROI region consists of 4 elements:

element # label description
0 xmid x value for central pixel
1 ymid y value for central pixel
2 xwid half-width of ROI in pixels
3 ywid half-width of ROI in pixels

get_bounds()
return the boundaries (start and end) of an ROI

SpecPy.GE.getGE_ROI(filename, frame, region)
Read a section (region of interest) of a GE image from a file. This is usually faster than reading an entire image.

Parameters

• filename (str) – The filename containing as-recorded GE images

• frame (int) – the image number on the file, counted starting at 1

• region (list) – describes the region to be extracted

element # label description
0 xmid x value for central pixel
1 ymid y value for central pixel
2 xwid half-width of ROI in pixels
3 ywid half-width of ROI in pixels

The extracted ROI will be pixels img[ymid-ywid:ymid+ywid,xmid-xwid:xmid+xwid]
where img is the full image.

Returns An image as a (2*ywid)x(2*xwid) numpy memmap (behaves like an array) of intensities

Example:

>>> ifil = ’/Users/toby/software/work/1ID/data/AZ91_01306.ge2’
>>> GE.getGE_ROI(ifil,2,(100,200,4,6))
memmap([[1755, 1762, 1763, 1761, 1766, 1762, 1761, 1756],

[1761, 1763, 1760, 1764, 1765, 1769, 1755, 1758],
[1762, 1762, 1763, 1758, 1769, 1769, 1757, 1756],

4.2. Complete Function Descriptions 39

SPECpy Documentation, Release 1.1.7Nov

[1760, 1767, 1764, 1763, 1763, 1765, 1762, 1756],
[1760, 1764, 1760, 1763, 1763, 1762, 1758, 1758],
[1761, 1760, 1766, 1762, 1761, 1767, 1761, 1761],
[1754, 1761, 1765, 1754, 1760, 1768, 1760, 1759],
[1763, 1764, 1764, 1763, 1766, 1762, 1765, 1761],
[1760, 1757, 1761, 1765, 1766, 1766, 1761, 1759],
[1761, 1761, 1761, 1761, 1761, 1763, 1757, 1758],
[1757, 1765, 1760, 1767, 1764, 1768, 1758, 1760],
[1762, 1765, 1764, 1760, 1764, 1766, 1761, 1761]], dtype=uint16)

SpecPy.GE.getGEimage(filename, frame)
Read a single entire GE image from a file

Parameters

• filename (str) – The filename containing as-recorded GE images

• frame (int) – the image number on the file, counted starting at 1 An exception is raised if
frame is greater than the number of frames in the file.

Returns An image as a 2048x2048 numpy array of intensities

Example:

>>> ifil = ’/Users/toby/software/work/1ID/data/AZ91_01306.ge2’
>>> GE.getGEimage(ifil,2)
array([[1699, 1713, 1713, ..., 1701, 1697, 1695],

[1708, 1717, 1717, ..., 1708, 1703, 1705],
[1715, 1719, 1719, ..., 1708, 1707, 1707],
...,
[1714, 1720, 1714, ..., 1698, 1702, 1697],
[1714, 1718, 1716, ..., 1702, 1703, 1702],
[1701, 1704, 1697, ..., 1684, 1685, 1687]], dtype=uint16)

SpecPy.GE.sumAllGE_ROIs(filename, regionlist, processes=1)
Computes the average intensity for each ROI specified in the regionlist for every frame in a raw GE image file.

Parameters

• filename (str) – The filename containing as-recorded GE images

• regionlist ([ROI_rect]) – A list of ROI_rect objects

• processes (int) – specifies the number of simultaneous processes that can be used to perform
ROI integration using the Python multiprocessing module. The default, 1, will not use this
module and all computations are done in the current thread. Values >1 can show significant
gains in speed on multicore/multicpu computers.

Returns a list of MxN array of average intensity values, where M is the number of frames and N is
the number of ROI region(s) in regionlist.

Examples:

>>> ifil = ’/Users/toby/software/work/1ID/data/AZ91_01306.ge2’
>>> GE.sumAllGE_ROIs(ifil, [(100,200,4,6), (1335,1525,50,50)])
array([[1794.57291667, 1801.2036],

[1761.80208333, 1792.6894],
[1760.5 , 1791.7353],
[1760.36458333, 1791.4961],
[1760.03125 , 1791.6162],
...
[1760.0625 , 1779.0867],

40 Chapter 4. Module GE: GE Image processing

SPECpy Documentation, Release 1.1.7Nov

[1759.72916667, 1779.1182],
[1759.5 , 1779.2508]])

In the example above, two ROIs are integrated for all frames in a file in the current Python interpreter.

>>> import GE
>>> import numpy as np
>>> import time
>>> imgfile = ’/tmp/AZ91_01306’
>>> regionlist = [ROI_rect(1335,1525,50,50),ROI_rect(1435,1525,50,50),
... ROI_rect(335,1525,50,50),ROI_rect(1935,1525,50,50)]
>>> nframe = GE.Count_Frames(imgfile)
>>> l = {}
>>> for proc in range(10):
... st = time.time()
... l[proc] = GE.sumAllGE_ROIs(imgfile,regionlist, proc)
... print ’sec per frame, processors=’,proc,(time.time()-st)/float(nframe)
... assert(np.allclose(l[0],l[proc]))

The example above integrates 4 ROIs and compares running with all computations in the current Python thread
(processes=0 and 1) with running with up to 9 concurrent processes. Usually one sees a speed-up with ~1.5
times the actual number of cores for multiprocessing. The assert is used to confirm the computation returns the
same results independent of the number of processes.

SpecPy.GE.sumGE_ROIs(filename, frame, regionlist)
Reads a frame from a raw GE image file and returns a list of the average intensity for each ROI specified in the
regionlist.

Parameters

• filename (str) – The filename containing as-recorded GE images

• frame (int) – the image number on the file, counted starting at 1

• regionlist ([ROI_rect]) – A list of ROI_rect objects

Returns a list of N average intensity values, one for each ROI region in regionlist.

Example:

>>> ifil = ’/Users/toby/software/work/1ID/data/AZ91_01306.ge2’
>>> regionlist = [ROI_rect(1335,1525,50,50),ROI_rect(1435,1525,50,50),]
>>> GE.sumGE_ROIs(ifil,2,regionlist)
[1792.6894, 1780.4342]

SpecPy.GE.sumGE_ROIs_wrapper(args)
Provides an interface to sumGE_ROIs() that allows it to be called with a single argument. This is needed for
use with the multiprocessing module and sumAllGE_ROIs()

Parameters args (tuple) – A tuple or list containing a filename, frame, and regionlist, as defined in
sumGE_ROIs().

Returns a list of N average intensity values, one for each ROI region in regionlist.

Note that this package requires the Python NumPy package. In addition the PyEpics package must be installed order
to control an instrument. However, if PyEpics is not installed, all routines documented here can still be run. In this
case EPICS interactions will be simulated and print statements will report what the Python code is attempting to do.
Likewise, if PyEpics is installed, but :func:‘spec.EnableEPICS‘ is not called (or is called with a value of False), again
no communication with EPICS is attempted. This allows scripts to be developed and tested without access to the
instrument.

4.2. Complete Function Descriptions 41

SPECpy Documentation, Release 1.1.7Nov

42 Chapter 4. Module GE: GE Image processing

PYTHON MODULE INDEX

s
SpecPy.AD, 30
SpecPy.GE, 36
SpecPy.macros, 15
SpecPy.spec, 1

43

SPECpy Documentation, Release 1.1.7Nov

44 Python Module Index

INDEX

A
A (motor array), 5
AD_acquire() (in module SpecPy.AD), 32
AD_cmds() (in module SpecPy.AD), 33
AD_done() (in module SpecPy.AD), 33
AD_get() (in module SpecPy.AD), 33
AD_set() (in module SpecPy.AD), 34
AD_show() (in module SpecPy.AD), 34
add_logging_Global() (in module SpecPy.macros), 25
add_logging_motor() (in module SpecPy.macros), 26
add_logging_PV() (in module SpecPy.macros), 25
add_logging_PVobj() (in module SpecPy.macros), 26
add_logging_scaler() (in module SpecPy.macros), 26
ascan() (in module SpecPy.macros), 26

B
beep_dac() (in module SpecPy.macros), 27

C
Cclose() (in module SpecPy.macros), 20
check_beam_shutterA() (in module SpecPy.macros), 27
check_beam_shutterC() (in module SpecPy.macros), 27
Copen() (in module SpecPy.macros), 21
COUNT, 4
count_em() (in module SpecPy.spec), 10
Count_Frames() (in module SpecPy.GE), 37
ct() (in module SpecPy.spec), 11

D
DEBUG, 5
defADcmd() (in module SpecPy.AD), 35
DefineAreaDetector() (in module SpecPy.AD), 35
DefineLoggingPlot() (in module SpecPy.macros), 21
DefineMtr() (in module SpecPy.spec), 5
DefinePseudoMtr() (in module SpecPy.spec), 6
DefineScaler() (in module SpecPy.spec), 7
DefMonitor() (in module SpecPy.macros), 21
Detector-specific commands

GE, 31
Retiga, 32
ScintX, 32

dscan() (in module SpecPy.macros), 27

E
ELAPSED, 5
EnableEPICS() (in module SpecPy.spec), 8
Eval() (SpecPy.macros.FitClass method), 21
Eval() (SpecPy.macros.FitGauss method), 22
Eval() (SpecPy.macros.FitSawtooth method), 22
ExplainMtr() (in module SpecPy.spec), 8

F
FitClass (class in SpecPy.macros), 21
FitGauss (class in SpecPy.macros), 22
FitSawtooth (class in SpecPy.macros), 22
Format() (SpecPy.macros.FitClass method), 22
Format() (SpecPy.macros.FitGauss method), 22

G
GE detector commands, 31
get_bounds() (SpecPy.GE.ROI_rect method), 39
get_counts() (in module SpecPy.spec), 11
GetDet() (in module SpecPy.spec), 8
getGE_ROI() (in module SpecPy.GE), 39
getGEimage() (in module SpecPy.GE), 40
GetMon() (in module SpecPy.spec), 8
GetMtrInfo() (in module SpecPy.spec), 8
GetScalerInfo() (in module SpecPy.spec), 8
GetScalerLabels() (in module SpecPy.spec), 9
GetScalerLastCount() (in module SpecPy.spec), 9
GetScalerLastTime() (in module SpecPy.spec), 9

I
init_logging() (in module SpecPy.macros), 28
initElapsed() (in module SpecPy.spec), 12
InitLoggingPlot() (in module SpecPy.macros), 22

L
ListMtrs() (in module SpecPy.spec), 9
log_it() (in module SpecPy.macros), 28

45

SPECpy Documentation, Release 1.1.7Nov

M
make_log_obj_Global() (in module SpecPy.macros), 28
make_log_obj_motor() (in module SpecPy.macros), 28
make_log_obj_PV() (in module SpecPy.macros), 28
make_log_obj_PVobj() (in module SpecPy.macros), 28
make_log_obj_scaler() (in module SpecPy.macros), 29
MakeMtrDefaults() (in module SpecPy.macros), 22
MAX_RETRIES, 5
mmv() (in module SpecPy.spec), 12
MoveMultipleMtr() (in module SpecPy.spec), 9
mv() (in module SpecPy.spec), 12
mvr() (in module SpecPy.spec), 12

O
offsim() (in module SpecPy.spec), 13
onsim() (in module SpecPy.spec), 13

P
PlotGEimage() (in module SpecPy.GE), 37
PlotROIsums() (in module SpecPy.GE), 38
PositionMtr() (in module SpecPy.spec), 10

R
ReadMtr() (in module SpecPy.spec), 10
RefitLastScan() (in module SpecPy.macros), 23
Retiga detector commands, 32
ROI_rect (class in SpecPy.GE), 39

S
S (scaler array), 5
SaveMotorLimits() (in module SpecPy.macros), 23
ScintX detector commands, 32
SendTextEmail() (in module SpecPy.macros), 23
setCOUNT() (in module SpecPy.spec), 13
setDEBUG() (in module SpecPy.spec), 13
SetDet() (in module SpecPy.spec), 10
setElapsed() (in module SpecPy.spec), 13
SetMon() (in module SpecPy.spec), 10
setRETRIES() (in module SpecPy.spec), 13
SetScanFile() (in module SpecPy.macros), 24
show_logging() (in module SpecPy.macros), 29
ShowPlots() (in module SpecPy.macros), 24
shutter_manual() (in module SpecPy.macros), 29
shutter_sweep() (in module SpecPy.macros), 29
SIMSPEED, 5
sleep() (in module SpecPy.spec), 13
Sopen() (in module SpecPy.macros), 24
specdate() (in module SpecPy.macros), 29
SpecPy.AD (module), 30
SpecPy.GE (module), 36
SpecPy.macros (module), 15
SpecPy.spec (module), 1
StartAllMonitors() (in module SpecPy.macros), 24

StartParms() (SpecPy.macros.FitClass method), 22
sumAllGE_ROIs() (in module SpecPy.GE), 40
sumGE_ROIs() (in module SpecPy.GE), 41
sumGE_ROIs_wrapper() (in module SpecPy.GE), 41
Sym2MtrVal() (in module SpecPy.spec), 10

U
ummv() (in module SpecPy.spec), 13
umv() (in module SpecPy.spec), 14
umvr() (in module SpecPy.spec), 14
UpdateLoggingPlots() (in module SpecPy.macros), 24
UseEPICS() (in module SpecPy.spec), 10
UserIn() (in module SpecPy.macros), 25

W
wa() (in module SpecPy.spec), 14
wait_count() (in module SpecPy.spec), 14
wm() (in module SpecPy.spec), 14
write_logging_header() (in module SpecPy.macros), 29
write_logging_parameters() (in module SpecPy.macros),

29

46 Index

	Module spec: SPEC-like emulation
	Motor interface routines
	Scaler routines
	More spec-like capabilities
	Routines not in spec
	Global variables
	A[]
	S[]
	Complete Function Descriptions

	Module macros: Additional SPEC-like emulation
	General Purpose Routines
	Logging
	Plotting
	Monitoring
	Macros specific to 1-ID
	Complete Function Descriptions

	Module AD: Area-Detector access
	Detector Access Routines
	Detector Setup Routines
	Defined Commands
	Complete Function Descriptions

	Module GE: GE Image processing
	Summary
	Complete Function Descriptions

	Python Module Index
	Index

